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AbstracL A fractional equation for diffusion in isotropic and homogenmus fraclal 
~tmctures is discussed. It generalizer the fractional diffusion quation valid lor d -  
dimensional Euclidean systems. ?he asymptotic behaviour ol the probability density 
function is obtained exactly. Analytical expressions are derived for the sgllering and 
relaxation functions. which a n  be studied by x-ray and neutron scattering experiments 
on fractals. 

1. Introduction 

In a previous work [l], an approximate fractional differential equation describing 
the asymptotic behaviour of diffusion on fractal structures has been proposed. The 
solution of the fractional diffusion equation (FDE) correctly describes the stretched 
Gaussian shape of the probability density function P( r,  1) (when 1‘ + M), valid on a 
large class of fractal structures [2-51. The approximate form of the FDE discussed in 
[l], however, reduces exactly to its standard counterpart for onedimensional systems 

In this paper we study a more general form of the FDE which reduces exactly to its 
standard counterpart in ddimensional Euclidean systems. ’RI obtain the new FDE, we 
discuss first the general form of the fractional diffusion equation in the ddimensional 
Euclidean case. 

In the case of an isotropic and homogeneous medium, the density function P( v, 1 )  
giving the probability that a Brownian particle is at distance r at time 1, obeys the 
diffusion equation 

only. 

where Do is the diffusion coefficient and d the Euclidean dimension of the system. 
The solution of (1.1) is a Gaussian, P( r,  t )  Y t - d / 2  exp[-constant( r / R ) ’ ] ,  and the 
mean-square displacement of the Brownian particle (r2(t)) E R2 Z Do 1. 

Deiioiiiig by P ( r , s j  ‘;le b . p l ~ e  iiaiisfoiiii of qi;, t i ,  

P ( r , s )  = l m d l  exp( - s t )P ( r , t )  

mO5.4470/92/082l07+11504.50 @ 1992 IOP Publishing Lid 2107 
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and assuming Do = 1 for simplicity, (1.1) can he written in the Laplace domain as 

H E  Roman and M Giona 

According to Oldham and Spanier [6] (see also [l]), the fractional equation corre- 
sponding to (1.1) relates the time derivative of order ; of P ( r ,  t), defined as 

to its spatial derivative as follows 

(1.3) 

Tb determine the coefficient K ,  it is convenient to define the 'fractional' diffusion 
operator fi as 

and (1.4) can be written, in the Laplace domain (see [6]), as s ' / ~ P ( T ,  s) = ~ ~ P ( T , s )  
(when Do = 1). Applying H to the last equation from the left, we obtain 

We see that (1.5) coincides with (1.2) up to terms of order 1/r provided that 

n = ( d  - 1 ) / 2 .  (1.6) 

When d = 1 and d = 3, i.e. IC = 0 and n = 1 respectively, (1.5) is identical to (U), 
and the fractional diffusion equation (1.4) yields the exact result. In two dimensions, 
however, (1.4) is valid only asymptotically, r / R  + 00 [6]. 

In the following, we generalize (1.4) for describing diffusion on fractals according 
to the procedure discussed in 111. 

2. b c t i o n a l  diRusion equation on fractals 

Diffusion in complex media such as fractals displays several anomalous features: the 
mean-square displacement of a Brownian particle is slowed down on all time scales 
obeying 

R Z  ~ t z l d -  (2.1) 

where d, > 2 is the anomalous diffusion exponent, and the probability density 
function P ( r ,  1 )  displays a non-Gaussian shape [2-51. 
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'lb describe P (  r, 1 )  on isotropic and homogeneous fractals, we study a generalized 
fractional diffusion equation obtained from (1.3) by identifying the exponent f in the 
time derivative of P( T ,  1 )  with its anomalous counterpart 1 / d w ,  ie. 

Thus, (1.4) becomes 

where A > 0 is a constant. Tb determine n on fractals, it is useful to recall the 
geometrical meaning of the ?dependent factors in (1.1). 

On regular systems, the factor rd-l in (1.1) represents the area of the hypersurface 
in a ddimensional space (or number of sites on a lattice) available for diffusion at 
a distance P from the origin. From this follows the result (1.6). On fractals, the 
available 'area' grows as rd*-l ,  where d, is the fractal dimension. Thus, purely 
geometric considerations would lead us to replace d by d,  in (1.6) for fractals, and 
K = ( d ,  - 1) /2  would be obtained. We will find, however, that this simple choice 
may not be the appropriate one. 

The solution of (2.2) in the Laplace domain reads 

where Q ( s )  can be determined from the normalization condition (see [l]) 
m 

d V ( r )  P ( P , s )  = l / s  dV(r)  = AdTPdf-' A > O  

leading to 

A' > 0 
A' 

Q ( s )  = - 

where d ,  = 2d,/dw is the spectral or fracton dimension [7]. It is easy to see that 
(2.3) is consistent with the anomalous behaviour (2.1). since J;dV(r) r 2 P ( r , s )  - 
s - ( I + ~ / ~ - )  corresponds to the Laplace transform of (rZ(l)). 

Tb learn about the behaviour of the probability density in the temporal domain, 
it is instructive to consider first the behaviour of P ( r , t )  when r / R  -t m. As 
discussed in appendix A, the probability density obeys the stretched Gaussian form 
asymptotically 

CI 

P ( r , t )  S P , ( t )  (i) e x p [ - b ( ~ / R ) " ]  r / R >  1 (2.4) 

where 

t L  = - dw < 2  
dw - 1 (2.5) 

71 
a =  - ( d s  - 1 - 2 n )  2 ( 2 4  
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and 
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a Po(l) = - 
12.12 

ensures the normalization condition of P( r ,  1 ) .  
Our result (2.4) is in agreement with the stretched Gaussian form of P( T ,  1 )  on 

fractals [2-51. It is interesting to note that the value a = 0 is not inconsistent with 
U,= yrwrLruJ a*a,,'l",G CAL1L.L TII"LII*,III,",, lG3"ll> LJ, *,. such B vz:iii? k oviaeij 
when 
&I." ..*^^^^+I.. ,...,.:,"!-le "̂̂ Î r̂.....n.n+:̂ " -..̂ ..I.̂  '2 "1 

d ,  - 1 
2 

K=- 

(see equation 26). This would mean physically that information about the dynamic 
process (contained in the exponent d,) is required for determining the exponent K. 
In contrast, in the Euclidean case n has a purely geometrical origin. 

Having discussed the asymptotic behaviour of P(r ,  1 )  as obtained from (2.3), 
we consider next the behaviour of P(r ,  t )  near the origin, r = 0. As shown in 
appendix B, (2.3) can be inverted and a closed integral form of P ( r , t )  can be 
obtained analytically. We find that near the origin P ( r ,  t )  displays the power-law 
L̂ L̂ ..? -..- LxllavIuur 

governed by the exponent n. When K > 0, as in our case (equation (2.8)), P ( r , t )  
displays a weak (integrable) singularity near the origin. This result is in strong contrast 
with the standard behaviour of P(r ,  1 )  on Euclidean systems. Although (2.9) strictly 
holds in the continuum (on the lattice P ( 0 , t )  is finite because of the cutoff imposed 
by the lattice spacing a), it might still be detected in numerical simulations on the 
lattice for sufficiently long times 1, such that R( t )  >> 1 and a wide interval of distances 
a < T < R can be studied. Accurate numerical work along this direction is therefore 
highly desirable. 

in ult: iuiiuwing, we cd~cuia~c i i i ~  scai~cl~lig iui i~~iui i  J ( K ,  w )  w i ~ u p r r u u i p  LU 
the present diffusion problem. This quantity is of interest because it can be studied 
by x-ray and neutron scattering experiments on fractals. As a by-product, we obtain 
the asymptotic behaviour of the relaxation function P ( k ,  1 ) .  

r- _L. ..-I, ? _ _  --,...a-.- .L̂  _^^..^_ :-- 2 ....-. :-- cl,, , ̂̂__̂ "..-..A:.." .- 

3. Scattering and relaxation function for dimusion on fractnls 

The scattering function, or dynamic structure factor [SI, S ( k , w )  can be obtained 
from the relation 

S ( k , w )  = R e S ( k , s )  s = iw ( 3 4  

where 
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can be. evaluated exactly using the Laplace transform result (2.3). Considering a three- 
dimensional embedding space and after integrating over the angles, (3.2) becomes 

whose solution is 

where p = s ' ld- / (kA) and p = d,-n-1. We note that according to (3.4), S ( k , w )  
obeys the scaling form 

where g( z) is the scaling function and 

W k  ,., kd" (3.5) 

k the characteristic frequency. 7b obtain the asymptotic behaviour of S(lc,w),  let us 
consider first the case w > w k ,  which correspond's to p > 1 in (3.4). In this limit, 
we obtain after some algebra 

w >> W L  
A2 k2 S ( k , w )  - B ~ 

W6 

where 

2 6 = 1 + -  
dw 

and E = 2rrA'r(p)sin(x/d,)(df - ~ ) [ ( d ,  - t i ) 2  - 1]/6. It should be emphasized 
that the value of 6 thus obtained (equation ( 3 x 3 ) )  is independent of the choice of ti. 

of P ( r , t ) ,  r / R  - CO, which is described accurately by the present approach, equa- 
tion (2.2). Although the result (3.6) is not new (see e.g. [9]t),  we do not know of any 
rigorous derivation of it. 

Let us consider now the case w << w k ,  i.e. the case p + 0 in (3.4). Thii limit 
corresponds to the behaviour of P ( r , t )  when r / R  i 0. Here, we find a weak 
power-law divergency when w + 0 of the form 

-me result (3:h) is quite robust hemme i! corresponds tn the qmptntlr khavi0ny 

1 1  
S ( k , w )  ,., - w < w k  (3.70) ~7 kd.(I--t) 

where 

(3.76) 

t Although the authors of [9] do not mnsider the problem 01 diffusion on fractals, the asymptotic 
behaviour (3.6) is derived from quite geneml assumptions. 
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It should be emphasized that even in the case that n = 0,  implying a smooth 
behaviour of P( r,  t )  near r = 0, a singularity in the structure factor (equation (3.7)) 
is still present near w = 0 since 7 = 1 - d,/d, > 0 in this case. Note that (3.6) and 
(3.7) correspond to the Lorentzian result (see e.g. [SI) 

H E  Roman and M Giona 

2 Do kz 
W ~ + ( D , ~ ~ ) ~  S ( k , w )  = 

with 6 = 2 and y = 0,  when d, = d, = d = 3 and d ,  = 2, as required. 
The structure factor S ( k , w )  obtained from (3.1) and (3.4) is plotted in figure 1 

as a function of w,  when k = 1. The asymptotic behaviours of (3.6) and (3.7) are 
displayed by the straight lines. The crossover frequency wk may be also obtained 
graphically as indicated in the figure. Their expected kdependence (3.5) has been 
verified numerically. Figure 2 shows S ( k ,  w )  against frequency w for several values 
of d,. including the Lorentzian result. 

Figure L Scattering function S ( k , w )  against Y for k = 1. d ,  = 2.5 and d ,  = 3.5. 
The slraight lines have the asymptotic slopes predided by (3.7) when Y > wk, and 
(3.9) when w a W X .  The clMSover frequencj wk is indicated by the arrow. 

We note that the low w behaviour of S ( k ,  w )  is still mnsistent with the sum rule 
(derived from the normalization condition of P( T-, t ) )  

rm 

since the weak divergengy (3,7) k integrable for w + 0 (7 < 1): and for w + 0 0 ~  

S ( k ,  w )  decays sufficiently fast (6 > 1 in equation (3.6)). 
Let us consider next the relaxation function, or intermediate scattering function, 

P( k ,  1 )  which is defined as 

P ( k , t )  = d r  exp(ik:v)P(T-, t )  (3.9) I 
whose Laplace transform is S(k,s) (equation (3.2)). 
P ( k , i )  can be obtained from (3.4), 

The aaling behaviour of 

P ( k , t )  = f ( k d ' " t )  (3.10) 
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10-6 1 o - ~  100 i o 3  io6 

Figure 2 Scattering function S ( k ,  w )  against w for t = 1, dt = 2.5 and w e r a l  values 
of d , .  Fmm top to bottom: d ,  = 3.5,  3.0, and 2.5. me broken line mrrespnds to 
the Larenlzian xsuI1, df = 3 and d ,  = 2. 

where f(z) is the scaling function. Similarly as for the one-dimensional case (see 
figure 1 in [l])? the functional form of f(z) changes from an exponential behaviour 
iit small a Q zC, to a power-law dependence when z >> zC. In one dimension, the 
'crossover' value zc -+ m when d, + 2 (d, already sticks at its Euclidean value, 
d, = 1) and, in this limit, f (z)  = ex]>(-z) for all z. In the three-dimensional case, 
zc diverges when both d, and d, tend to their Euclidean values. The asymptotic 
behaviour of f(z) when z >> z,, can be obtained from (3.4) when p -+ 0. We find 

(3.11) 1 
f(z) - 21--). x >> IC 

where y = 1 - ( d ,  - ~ ) / d ,  (equation (3.76)). This power-law relaxation at large 
times is typical of equation (2.2). Even if P ( T , ~ )  is 'well-behaved' at the origin, 
which is for instance the case when K = 0 (see equation (2.9)), the slowing down 
(3.11) is still manifested. 

The small z behaviour of f(z) (or short-time behaviour of P(lc,t)) can be 
obtained from (3.4) when p + 00, 

B C k 2  
S(k,s) - - - - t S l + 2 1 d w  

where B ,  C > 0, yielding 

f ( z )  - 1 -constant z2/d*  z << zc (3.12) 

a result that can be obtained easily from (3.9) when k - 0 and Reexp( ik .  T )  E 
1 - (k  . ~ ) * / 2  holds. Note that (3.12) can be described approximately hy the stretched 
exponential behaviour in time 

~ ( k , t )  - ex])[-constant ( P - t ) ' / " w ]  z << zc 

which corresponds to the Euclidean limit, P ( k , t )  = exp(-Dok21), when zc - m 
and d, -, 2. 
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4. Summary and concluding remarks 

We have discussed in detail a general form of a fractional differential equation which 
suitably describes the asymptotic behaviour of the probability density P ( r ,  t )  for dSu-  
sion in homogeneous fractal structures. The generalized fractional diffusion equation 
(FDE) constitutes a natural extension of the FDE valid in Euclidean systems. The 
solution of the general FDE is obtained in a close integral form and the asymptotic 
behaviours of P( r,  1 )  for both small and large distances r are obtained exactly. 

For distances r large compared with the diffusion length R - illd-, we obtain 
the stretched Gaussian form 

H E Roman and M Giona 

P ( r , t )  - P,(t)exp[-a(r/R)"] r / R >  1 

with U = d, / (d,  - l), while for short distances 

P ( r . 1 )  -. Po(i)(v/R)-" r / R  << 1 

with n = ( d s -  1 ) / 2  < 1, where the spectral dimension d,  = 2d,/d,  determines the 
behaviour of the normalization factor, P,(t) - t - d m l z ,  and d, is the fractal dimension. 

Accordingly, the relaxation function P( k, t )  associated with P( r,  t) displays a 
p e r - i a w  behaviour at iong times 

where y = 1 - ( d ,  - n ) / d , .  At short times, 

P ( k , t )  - exp(-constant k 2 t 2 / d w )  

displaying the !mown stretched exponential time dependence. 

large frequencies, we find 

kd-t  < 1 

An exact expression is obtained for the dynamic structure factor S ( k , w ) .  For 

while at low frequencies, 

Some questions, however, remain open and further theoretical and numerical 
work is required to clarify them. In particular, the behaviour of P ( r , t )  near the 
origin, r / R  << 1, represents one of the most intriguing aspects deriving from the 
present approach. Understanding this problem is also important for determining 
the behaviour of the relaxation function P ( k , t )  at long times, kdwt  >> 1. Further 
extensions of this approach can be achieved by studying the whole family of FDE as 
briefly discussed in [l]. Perhaps, such an attempt may lead us to a complete and 
satisfactory theory of diffusion on fractal structures. 
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Appendix A 

'Ib obtain the asymptotic behaviour of the probability density in the temporal domain, 
we assume the scaling form (see also [l]) 

P ( r ,  t )  = - t J , 2  ($)* e x ~ [ - b ( r / R ) ~ l  r / R  > 1 (A9 

where a, b > 0 are constants, and determine the exponents a and U such that the 
iapiace aansiorm of (AI) IS conslstent wxth (2.3). The Laplace transform of P( P, t )  

cm be evaluated by steepest descent methods. The leading contribution to (A2) 
when r + CO and s + 0, occurs for times t close to the value 1, which minimizes 
the argument p ( t )  of the exponential factors in the integrand, p ( t )  = s t +  b ( r / R ) " .  
Thus, we find 

Expanding p ( t )  up to second order terms ( 1  - t . )2 ,  (A2) becomes 

where p " ( t , )  denotes the second derivative of p with respect to t evaluated at t = t,, 
p"(t,) - s2( ~ s ~ l ~ - ) " ( ~ - - l ) / ~ - - ~ .  The remaining Gaussian integration in (A3) yields 
an extra factor - [ p " ( t . ) ] - 1 / 2 [ ~  + e r f ( t ,  ,/"-)I. 

Comparison of the arguments of the exponentials in (A3) and (2.3) yields d )  = 1, 
which implies 

(A4) 

and from the power law ( T S ' / ~ ~ ) - ~  in ( 2 4 ,  we find 

U 

(W a = - <  ( 1, - 1 - 2 R ) .  
2 

Equation (AS) yields a = - d f ( d w / 2  - I ) / ( &  - 1) < 0 when h: = (d ,  - i ) / z ,  
and a = 0 when R = ( d ,  - l ) / Z .  We now see one of the roles of the exponent 
K :  It determincs the exponent a in the power-law prefactor in (Al) describing the 
asymptotic behaviour of P(T,  1 )  when v / R  ).> 1 (see also appendix B). 
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Figure 3. Contour of integralion in the mmplex plane for evaluating lhe inverse Laplace 
wansfam formula (BI). 

lo-i  1 oo X IO' 

Flgurr 4 Probability density P(r, t ) t d l l d *  against z E VIR, as obtained by numerical 
integration of (82) when d ,  = 2.5, d ,  = 3.5,  K = ( d .  - 1)/2 = 0.214, and A' = II. 
The full CUM represents the analytical form f(z) = (a  + b z - " ) e x p ( - c  a'"), wilh 
U = 1.4,  showing the WO aspplotic behaviours f ( z )  - z-* when z - 0, and 
f(z) w exy(-cz") when z - m. n i e  mnstanls a, b and e arc fitting parameters. 

Appendix B 

The inverse Laplace transform of (2.3) can be evaluated from the mmplex inversion 
formula 

. nn+im 

following the integration path shown in figure 3. It can be shown that the integrals 



Fractional diffusion equation on fractak: II 2117 

along the circular paths vanish and applying the theorem of Cauchy (Bl) becomes 

P ( r , t )  = - lim 1 ds ed tP(  r , s )  + L2 ds e"P(r , s ) )  
a-Q,b-m (l, 

leading to the result 

where R = tild-, 0 = n(1- 7) - ( ~ / R ) z ' / ~ -  s i n ( x / d , )  and 

Since K < d, (see section 2), we see from (B3) that 7 < 1 and the integral in (B2) 
converges for all r. 

Numerical integration of (B2) in the case that d,  = 2.5, d ,  = 3.5 and K = 
(d, - 1)/2 I 0.214 is shown in figure 4. For r / R  >> 1, (B2) coincides with the 
predicted stretched Gaussian behaviour (see appendix A) P ( r ,  t )  - exp[-b(r /R)"] ,  
with U = d , / ( d ,  - 1) = 1.4. For r / R  i< 1, (B2) develops the weak divergency 
P ( r , t )  - ( r / R ) - & .  
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